期刊文献+

基于自回归分布滞后的高能耗产业用电量预测

Prediction of energy consumption in high energy consumption industries based on Autoregressive Distributed Lag
在线阅读 下载PDF
导出
摘要 针对当前高能耗产业用电量预测模型对用电数据质量依赖较高且时序分析能力不佳,导致用电量预测准确率较低、计算耗时较长的问题,提出基于自回归分布滞后的高能耗产业用电量预测方法。采用大数据挖掘技术中的K均值算法完成数据分析,应用ADF检测对数据展开平稳性检测,选取因果关系检验方法完成指标数据的检测与关联分析,获取预测模型指标。应用自回归分布滞后方法,构建高能耗产业用电量预测模型。实验结果表明,该方法的数据整理分析能力较强,进一步提升了用电量预测结果的准确性,可降低用电量预测耗时。 In response to the current high dependence of electricity consumption prediction models on the quality of electricity consumption data and poor time series analysis ability,which leads to low accuracy and long calculation time in electricity consumption prediction,a high energy consumption industry electricity consumption prediction method based on Autoregressive Distributed Lag(ARDL)is proposed.The K-means algorithm in big data mining technology is adopted to complete data analysis,and the ADF detection is applied to perform stationarity detection on the data.Nextly,causal relationship testing methods are selected to complete indicator data detection and correlation analysis,and obtain predictive model indicators.The ARDL method is used to construct a prediction model for electricity consumption in high-energy consuming industries.The experiment results show that the method has strong data organization and analysis capabilities,therefore,further improving the accuracy of electricity consumption prediction results and reducing the time consumption of electricity consumption prediction.
作者 刘逾尔 陈显枝 陈思琦 荀超 刘沙沙 LIU Yu-er;CHEN Xian-zhi;CHEN Si-qi;XUN Chao;LIU Sha-sha(State Grid Fuzhou Power Supply Company,Fuzhou 350000,China;State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350000,China;Beijing Guodiantong Network Technology Co.,Ltd.,Beijing 100000,China)
出处 《信息技术》 2025年第4期141-146,共6页 Information Technology
关键词 K均值算法 高能耗产业 自回归分布滞后 用电量分析 K-means algorithm high energy consuming industries Autoregressive Distributed Lag electricity consumption analysis

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部