期刊文献+

An Integrated Experimental-Simulation Calibration Method for the Constitutive Model of 6005A-T6 Aluminum Alloy Welds

在线阅读 下载PDF
导出
摘要 Due to the different microstructures caused by the heat source effect,welding joints exhibit significant differences in mechanical properties compared to the base material.Precise characterization of the constitutive characteristics of the welded joint requires a large number of repetitive experiments,which are costly,inefficient,and have limited accuracy improvements.This paper proposes an integrated experimental-simulation-based inverse calibration method,which establishes a calibration optimization problem based on the corresponding constitutive model and a finite element calculation model built by the distribution of hardness in the weldment.Using the global tensile force-displacement curve of the MIG-welded 6005A-T6 aluminum alloy specimen and the experimental data of local deformation with time change obtained from DIC(Digital Image Correlation),the parameters involved in the constitutive models are optimized accordingly.This method can directly obtain the constitutive characteristics of the weldment under conditions of limited experiments and insufficient data.Additionally,the adaptability of the constitutive model to the calibration method and the influence of optimization results are discussed and analyzed.The results indicate that the global force-displacement response of the non-saturated Ramberg-Osgood(R-O)model is in the best agreement with that of the experimental data,and the energy error is only 2.62%,followed by the MPL model,while the saturation-based Voce model shows the largest simulation error in terms of the presented object.Furthermore,the simulation results of R-O,Voce,and MPL models in the local area are far superior to traditional fitting methods.
机构地区 School of Mechanical
出处 《Chinese Journal of Mechanical Engineering》 2025年第1期233-245,共13页 中国机械工程学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.52202431,52172353) Talent Fund of Beijing Jiaotong University of China(Grant No.2024XKRC044).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部