期刊文献+

ENTIRE SOLUTIONS OF LOTKA-VOLTERRA COMPETITION SYSTEMS WITH NONLOCAL DISPERSAL

在线阅读 下载PDF
导出
摘要 This paper is mainly concerned with entire solutions of the following two-species Lotka-Volterra competition system with nonlocal(convolution)dispersals:{u_(t)=k*u-u+u(1-u-av),x∈R,t∈R,vt=d(k*v-v)+rv(1-v-bu),c∈R,t∈R.(0.1)Here a≠1,b≠1,d,and r are positive constants.By studying the eigenvalue problem of(0.1)linearized at(ϕc(ξ),0),we construct a pair of super-and sub-solutions for(0.1),and then establish the existence of entire solutions originating from(ϕc(ξ),0)as t→−∞,whereϕc denotes the traveling wave solution of the nonlocal Fisher-KPP equation ut=k*u−u+u(1−u).Moreover,we give a detailed description on the long-time behavior of such entire solutions as t→∞.Compared to the known works on the Lotka-Volterra competition system with classical diffusions,this paper overcomes many difficulties due to the appearance of nonlocal dispersal operators.
作者 郝玉霞 李万同 王佳兵 许文兵 Yuxia HAO;Wantong LI;Jiabing WANG;Wenbing XU(School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China;College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China;School of Mathematics and Physics,Center for Mathematical Sciences,China University of Geosciences,Wuhan 430074,China;School of Mathematical Sciences,Capital Normal University,Beijing 100048,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2023年第6期2347-2376,共30页 数学物理学报(B辑英文版)
基金 supported by the NSF of China (12271226) the NSF of Gansu Province of China (21JR7RA537) the Fundamental Research Funds for the Central Universities (lzujbky-2022-sp07) supported by the Basic and Applied Basic Research Foundation of Guangdong Province (2023A1515011757) the National Natural Science Foundation of China (12271494) the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (G1323523061) supported by the NSF of China (12201434).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部