期刊文献+

基于观测值聚类的多雷达数据融合 被引量:6

Multiradar Data Fusion Based on Clustering Measurements
在线阅读 下载PDF
导出
摘要 采用一种改进的K NN算法对多雷达观测数据进行聚类 ,结合聚类中心和目标预测值 ,应用卡尔曼滤波器估计目标状态 ,从而实现多雷达数据融合。实验结果表明这种方法是有效的。 This paper uses the improved K-nearest neighbor algorithm to cluster the observed data from multiradars,and integrates the centers of the clusters with premeasurements,then estimates the state of tragets with the Kalman filter to realize the multiradar data fusion. The result of the experimentation shows that the mathod is effective.
作者 刘洋 徐毓
出处 《雷达与对抗》 2002年第2期5-10,共6页 Radar & ECM
关键词 观测值 聚类 雷达 数据融合 卡尔曼滤波 K-NN算法 multiradar data fusion K-nearest neighbor algorithm clustering Kalman filtering
  • 相关文献

参考文献4

二级参考文献7

  • 1[1]Blackman,S.and Popoli,R. Design and Analysis of Modern Tracking Systems. Artech House,1999
  • 2[2]Bar-Shalom,Y. Multitarget-Multisensor Tracking: Principles and Techniques. Artech House, 1995
  • 3[3]Bar-Shalom,Y.etc. Tracking and Data Association. New York: Academic Press, 1988
  • 4[5]Illingworth,J. and Kittler, J. A Survey of the Hough Transform. Computer Vision Graphics and Image Processing, 1988,41(1):87~116
  • 5[6]Duda, R.and Hart,P.E. Use of the Hough Transform to Detect Line and Curves in Picture. Communication of ACM, 1972,(15):11~15
  • 6[7]Gollins,J.B. and J.K.Uhlmann. Efficient Gating in Data Association with Multivariate Gaussian Distributed States. IEEE Trans. on Aerospace and Electronic Systems,1992,AES-28(3):909~916
  • 7[8]Castanon, D.A. New Assignment Algorithms for Data Association. Proc. SPIE, 1992,1698(3):313~323

共引文献18

同被引文献30

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部